
From: Cooper, David A. (Fed)
To: Kelsey, John M. (Fed)
Cc: internal-pqc
Subject: Re: SPHINCS+ and message bound signatures
Date: Tuesday, October 26, 2021 2:16:56 PM

Hi John,

I'm not very good a reading security proofs. However, looking at the definition of message-
bound signatures (Definition 3.2 in https://eprint.iacr.org/2020/1525.pdf) along with the
definition of a negligible function, I think that SPHINCS+ does, at least technically, have this
property. However, I believe that the attack you describe is correct.

This is basically the same as the issue that you raised with stateful hash-based signatures (SP
800-208) at the 192-bit security level. At you suggestion, Section 9.2 of SP 800-208 notes that
the security strength against a collision generated by the private key holder is half the number
of bits as the security strength provided against all other attacks. In particular, the 192-bit
parameter sets generally provide 192 bits of security strength, but only 96 bits of security
against a private key holder trying to create a collision.

In the case of SPHINCS+, the loss is security is actually much less than it is for LMS or
XMSS. So, we can certainly raise the issue, but I think our suggestion should be that it is
sufficient to simply note the issue in the final standard, if SPHINCS+ is selected.

On 10/14/21 6:12 PM, Kelsey, John M. (Fed) wrote:

Eveyone,

The BUFFing paper talks about one of its properties as having message-bound
signatures. That’s defined as having signatures only valid for a unique message. You
can think of this as having a signature on a message be a binding commitment to the
message—once I’ve seen S = sign(SK,M), you can’t produce another M’ such that
verify(PK,S,M’) = 1. They claim that SPHINCS+ meets this requirement, but I think
there’s a counterexample. I’m hoping I can get a couple of you to check me on this, in
case I’m missing something.

In the current version of SPHINCS+, we end up computing the message hash like this:

R = the randomness for this signature

idx,md = message_hash(PK, R , M)

The idx is the path through the Hypertree—it’s basically selecting which of the 2^{64}
or so FORS keys will be used to sign the message. Then, md is the message digest—it’s
the thing that is given to FORS to sign.

The size of idx is determined by the height of the hypertree, h. The size of md is the
number of FORS trees (k) times the log of the number of leaves per tree (a). So the

mailto:david.cooper@nist.gov
mailto:john.kelsey@nist.gov
mailto:internal-pqc@nist.gov
https://eprint.iacr.org/2020/1525.pdf

total size of everything the message does to affect the final signature is

h + k*a

As long as this value is less than twice the security level, the signer can find pairs of
messages that have the same idx,md just by brute force collision search.

Here’s the table from the SPHINCS+ spec, on page 38:

n h a k idx+md collision work

SPHINCS -128s 16 63 12 14 231 115.5

SPHINCS -128f 16 66 6 33 264 132

SPHINCS -192s 24 63 14 17 301 150.5

SPHINCS -192f 24 66 8 33 330 165

SPHINCS -256s 32 64 14 22 372 186

SPHINCS -256f 32 68 9 35 383 191.5

So it looks to me like the signer can produce a pair of messages (M,M’) that will have an
identical signature under his private key. Since idx,md will be identical for M and M’,
the signature has to be the same.

Anyone see something I’m doing wrong here?

Thanks,

--John

